
© The Khronos® Group Inc. 2020 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License
© Khronos® Group 2020© Khronos® Group 2020

OpenCL 3.0
Neil Trevett

Khronos President
OpenCL Working Group Chair

NVIDIA VP Developer Ecosystems
ntrevett@nvidia.com | @neilt3d

April 2020

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:ntrevett@nvidia.com

© The Khronos® Group Inc. 2020 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

Agenda
• OpenCL Momentum
• OpenCL Evolution and OpenCL 3.0
• Extensions and Roadmap
• Layered OpenCL
• Get Involved!

https://www.khronos.org/registry/OpenCL/

https://www.khronos.org/registry/OpenCL/

© The Khronos® Group Inc. 2020 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Khronos Compute Acceleration Standards

Increasing industry interest in
parallel compute acceleration to
combat the ‘End of Moore’s Law’

GPU

FPGA DSP

Custom Hardware

GPUCPUCPUCPUGPU

GPU rendering +
compute

acceleration

Heterogeneous
compute

acceleration

Single source C++ programming
with compute acceleration

Graph-based vision and
inferencing acceleration

Trained Neural Network
exchange format

Import

Lower-level APIs
Direct Hardware Control

Intermediate
Representation (IR)
supporting parallel

execution and
graphics

Higher-level APIs
Streamlined development and

performance portability

AI/Tensor HW

© The Khronos® Group Inc. 2020 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

OpenCL is Widely Deployed and Used

Accelerated Implementations

Modo

Desktop Creative Apps

CLBlast

SYCL-BLAS

Linear Algebra
Libraries

Parallel
Languages

Math and Physics
Libraries

Vision and Imaging
Libraries

Machine Learning
Compilers

The industry’s most pervasive, cross-vendor, open
standard for low-level heterogeneous parallel programming

Arm Compute Library

SYCL-DNN

Machine Learning
Libraries and Frameworks

TI DL Library (TIDL)

VeriSilicon

XiaomiclDNN
Intel

Intel

Synopsis

MetaWare EV

NNAPI

https://en.wikipedia.org/wiki/List_of_OpenCL_applications

Vegas Pro

ForceBalance

Molecular Modelling Libraries

http://www.google.com/imgres?imgurl=http://www.evafedoramx.org/wp-content/uploads/2012/09/Logo-Gimp.png&imgrefurl=http://www.evafedoramx.org/2011/10/22/alternativas-libres-a-herramientas-privativas/&docid=lw631MBGbbWMKM&tbnid=gWQaxmY2sehNfM&w=500&h=500&ei=2DFjUdGOIOGEyAHsoYGYDw&ved=0CAMQxiAwAQ&iact=ricl
https://en.wikipedia.org/wiki/List_of_OpenCL_applications

© The Khronos® Group Inc. 2020 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

OpenCL Open Source Ecosystem Momentum

Doubling in under three years

By April 13, Folding@Home hit a new record of 2.4 exaflops,
faster than the top 500 traditional supercomputers combined,
thanks to almost 1 million new members of the network.
Folding@Home uses OpenCL to offload computations onto the
GPUs contained in the networked home PCs

https://foldingathome.org/

© The Khronos® Group Inc. 2020 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

OpenCL Standards Evolution

OpenCL 1.2
Creates Parallel

Programming Baseline
2008-2011

SPIR
Using

LLVM IR
2014

SPIR-V
Standalone

IR
2015

Vulkan 1.0
2016

OpenCL
Vulkan

Convergence
2018

OpenCL Layered
Over Vulkan
using SPIR-V

2019

OpenCL Layered
Over Multiple
Target APIs for
Deployment
Flexibility

OpenCL C++
Specification

2017

C++ for OpenCL
using Clang/LLVM

2019

Broad
LLVM/Clang
Language

Cooperation

SYCL 1.2
Over OpenCL
1.2 using SPIR

2015

SYCL 1.2.1
Over OpenCL
using SPIR-V

2017

OpenCL 2.X
Functionality in

Monolithic Specification
2013-2017

OpenCL 3.0
2.X Functionality
with Optionality

2020

SYCL 2020
Multiple
backends

Increased
Pervasive Core

Functionality for
App Portability

Increased
Optionality

for Embedded
Flexibility

OpenCL C
Specification

2008

APIs

Kernel
Languages

Vulkan 1.2
2020

Next Steps
Design

Influences
SYCL 2.2

Over
OpenCL 2.X

2016

© The Khronos® Group Inc. 2020 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

OpenCL 3.0

OpenCL 3.0
April 2020

Increased Deployment Flexibility
All functionality beyond OpenCL 1.2 is optional

Unified API specification slices OpenCL 2.X functionality into coherent, queryable, optionality
OpenCL C 3.0 language specification adds macros for optional language features

Subgroups with SPIR-V 1.3
New (optional) core functionality

Asynchronous DMA extension
Enabling a new class of Embedded Processors

OpenCL C++ not included
Ecosystem has transitioned to open source C++ for OpenCL

Easy for Developers to upgrade to OpenCL 3.0
NO code changes necessary if all used functionally is present

Applications encouraged to query used OpenCL 2.X functionality for future portability

Easy for Implementers to upgrade to OpenCL 3.0
Add queries for OpenCL 2.X functionality - missing or present

Update reported version and add minor entry points for improved app portability

© The Khronos® Group Inc. 2020 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

OpenCL 3.0 Design Philosophy

Increase deployment flexibility
Conformant implementations can focus on functionality for their target markets

OpenCL 2.2 functionality sliced into coherent, queryable, optionality
Everything beyond OpenCL 1.2 is made optional

OpenCL C 3.0 language specification adds macros for optional language features

Set the stage for new pervasively available core functionality
New core specifications can carefully integrate new widely accepted functionality

Adoption not blocked by the monolithic OpenCL 2.X specification

© The Khronos® Group Inc. 2020 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

OpenCL Roadmap

'OpenCL Next’
Faster core release cycle

New Pervasive Functionality
in Core Specification

Integrate proven,
widely adopted extensions

Flexible Profile
Finer-grain optional functionality

for embedded processors

‘Layering’ Profile?
Defined queries and

conformance for layered
implementations?

C++ for OpenCL
Open source C++ kernel language

front-end leveraging Clang and LLVM

Regular Maintenance Updates
Clarifications, formatting, bug fixes

Extension Pipeline
Extended Subgroups
Device UUID Query

Extended Debug Info
External Memory Sharing
Vulkan/OpenCL Interop

Recordable Command buffers?
Machine Learning Primitives?

Indirect Dispatch?
Device Topology?

Khronos OpenCL SDK
Headers, Utility Libraries,

Documentation, Samples, ICD Loader

Open Source Ecosystem
Tools, Domain Libraries

SPIR-V 1.4/1.5 ingestion
Compiler efficiency and expressiveness

Regular Maintenance Updates
Clarifications, formatting, bug fixes

Unified API Specification
All OpenCL versions documented in one place

Tightly organized queries for all 2.X functionality
OpenCL C 3.0 Language - macros for optional features

Subgroups and SPIR-V 1.3
New (optional) core functionality

Asynchronous DMA extension
Enabling a new class of Embedded Processors

OpenCL 3.0
April 2020 Time

© The Khronos® Group Inc. 2020 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

Unified OpenCL 3.0 API Specification
• Describes the API for all versions of OpenCL

- Rather than having a separate specification per version
- Matches SPIR-V environment, extension and SPIR-V specs

• Easier for developers to navigate
- And to consistently apply specification fixes and clarifications

• Describes deprecation and version evolution rationale
- Short introductory section describing the unified aspects
- "missing before X.Y" and "deprecated by X.Y" language

• All specification sources in open source on GitHub
- Accepting community bug reports and pull requests

https://www.khronos.org/registry/OpenCL/

https://www.khronos.org/registry/OpenCL/

© The Khronos® Group Inc. 2020 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Upgrading to OpenCL 3.0

For Developers
Upgrade from using OpenCL 1.2 to OpenCL 3.0

No code changes necessary
OpenCL 1.2 apps run unchanged on any OpenCL 3.0 device

Upgrade from using OpenCL 2.X to OpenCL 3.0
No code changes necessary if upgraded device drivers support

all used functionality

Query for Deployment Portability
All applications encouraged to query used V2.X functionality

All OpenCL 2.x API features can be queried
OpenCL C 3.0 macros for optional language features

For Implementers
Upgrade OpenCL 1.2 driver to OpenCL 3.0

Easy upgrade with minimal effort
Update reported version and add queries to report

OpenCL 2.X functionality as missing
Add some minor entry points for improved app portability

Free to add any desired OpenCL 2.X features

Upgrade OpenCL 2.X driver to OpenCL 3.0
Can continue to ship existing functionality

with full backwards compatibility
Add queries for OpenCL 2.X functionality - missing or present

May choose to drop OpenCL 2.X features if not relevant to target
markets to reduce costs and increase quality

© The Khronos® Group Inc. 2020 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

C++ for OpenCL
• Open source offline compiler to SPIR-V or device binary

- Replaces the OpenCL C++ kernel language
- Language documentation available
- https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf

• Enables full OpenCL C and most C++17 capabilities
- OpenCL C code is valid and fully compatible
- Enables gradual transition to C++ for existing apps

• Uses Clang/LLVM
- Generates SPIR-V 1.0 plus SPIR-V 1.2 where necessary
- Experimental support added in Clang 9
- https://clang.llvm.org/docs/UsersManual.html#cxx-for-opencl

- Bug fixes and improvements in Clang 10
- https://releases.llvm.org/10.0.0/tools/clang/docs/ReleaseNotes.html#opencl-kernel-language-changes-in-clang

• Check it out in Compiler Explorer
- https://godbolt.org/z/NGZw9U

template<class T> T add(T x, T y)
{
return x + y;

}

__kernel void test(__global float* a, __global float* b)
{
auto index = get_global_id(0);
a[index] = add(b[index], b[index+1]);

}

clang -cl-std=clc++ test.cl

OpenCL C:
- kernels,
- address spaces,
- special types,
...

Most of C++17:
- inheritance,
- templates,
- type deduction,
...

C++ for OpenCL

OpenCL C

C++ for OpenCL LLVMClang

SPIR-V LLVM
IR TranslatorC++ for OpenCL

Compiler Flow

https://github.com/KhronosGroup/Khronosdotorg/blob/master/api/opencl/assets/CXX_for_OpenCL.pdf
https://clang.llvm.org/docs/UsersManual.html#cxx-for-opencl
https://releases.llvm.org/10.0.0/tools/clang/docs/ReleaseNotes.html#opencl-kernel-language-changes-in-clang
https://www.google.com/url?q=https://godbolt.org/z/NGZw9U&sa=D&ust=1587946738064000&usg=AFQjCNFk3KgYL-ujVseTkyd6Tq8GEDwdwA

© The Khronos® Group Inc. 2020 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

Asynchronous DMA Extensions
OpenCL embraces a new class of Embedded Processors

Many DSP-like devices have Direct Memory Access hardware

Transfer data between global and local memories via DMA transactions
Transactions run asynchronously in parallel to device compute enabling wait for transactions to complete

Multiple transactions can be queued to run concurrently or in order via fences

OpenCL abstracts DMA capabilities via extended asynchronous workgroup copy built-ins
(New!) 2- and 3-dimensional async workgroup copy extensions support complex memory transfers

(New!) async workgroup fence built-in controls execution order of dependent transactions
New extensions complement the existing 1-dimensional async workgroup copy built-ins

Async Fence controls order of dependent transactions

All transactions prior to async_fence must
complete before any new transaction
starts, without a synchronous wait

async_copy1
async_copy2
async_fence
async_copy3

Async 3D-3D Copy Transaction

Copy
Transaction

Reshaping possible
Vglobal = Vlocal

Volume
global

Volume
local

The first of significant upcoming advances in OpenCL to
enhance support for embedded processors

© The Khronos® Group Inc. 2020 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

Roadmap: External Sharing and Interop
• Generic extension to import external memory and semaphores exported by other APIs

- Explicitly hand-off memory ownership with OpenCL
- Wait and signal imported external semaphores

• Layer with API-specific interop extensions
- Vulkan interop first
- DX12 and other APIs in the future

• Improved flexibility over previous interop APIs using implicit resources
- As were used for DX9-11 and OpenGL

Import handles to memory
and semaphores

Synchronize memory
access and ownership

Vulkan
OpenCL
Interop

© The Khronos® Group Inc. 2020 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

Apps and Libs
Apps and Libs

Roadmap: ‘Flexible Profile’

OS

Accelerators
OpenCL Drivers

Apps and Libs

App deployment across multiple
vendors’ accelerators E.g. Desktop

Portability is developer priority
Shared common functionality

OS

Accelerators
OpenCL Drivers

OS

Accelerator
OpenCL Drivers

Apps and Libs

OS

Accelerator
OpenCL Drivers

Apps and Libs

Vertically integrated apps, drivers and
accelerators E.g. Embedded

Conformance for customer-focused
functionality is implementer priority

Goals
Conformant OpenCL implementations on diverse embedded processors and platforms

Enable vendors to ship conformant functionality precisely targeting their customers and markets
Implementers use OpenCL as flexible runtime framework that can be pervasively and cost-effectively deployed

Design Philosophy
Additional OpenCL features become optional for increased deployment flexibility
Optionality includes both API and language features e.g. floating-point precisions

Enhanced query mechanisms – precisely which features are supported by a device?
Enables minimal footprint OpenCL – ideal for Safety Certification

© The Khronos® Group Inc. 2020 - Page 16This work is licensed under a Creative Commons Attribution 4.0 International License

API Layering

Layers
Over Vulkan OpenGL OpenCL OpenGL ES DX12 DX9-11

Vulkan Zink clspv
clvk

GLOVE
Angle vkd3d DXVK

WineD3D

OpenGL gfx-rs
Ashes Angle WineD3D

DX12 gfx-rs Microsoft
‘GLOn12’

Microsoft
‘CLOn12’

Microsoft
D3D11On12

DX9-11 gfx-rs
Ashes Angle

Metal MoltenVK
gfx-rs

clspv +
SPIRV-Cross?

MoltenGL
Angle

COLUMNS Benefit ISVs by making an API available everywhere
Application deployment flexibility by fighting platform fragmentation
Making an API available across multiple platforms even if no native drivers available

ROWS
Benefit
Platforms by
adding APIs
Enable content
without additional
kernel level
drivers

Enabled by growing robustness of
open source compiler ecosystem

© The Khronos® Group Inc. 2020 - Page 17This work is licensed under a Creative Commons Attribution 4.0 International License

SPIR-V Language Ecosystem

OpenCL C

C++ for OpenCL
clspv

triSYCL

Intel DPC++

Codeplay
ComputeCpp

LLVM

Khronos Open Source

3rd Party Open Source

Clang

Language Definitions

SYCL SPIR-V LLVM
IR Translator

Closed Source

Environment Specs
OpenCL Vulkan

OpenCLon12
Inc. Mesa SPIR-V to DXIL

SPIRV-Cross GLSL

HLSL

Metal
Shading

Language

glslangGLSL

HLSL DXC

DXIL

SPIR-V Tools
(Dis)Assembler

Validator
Optimize/Remap

Fuzzer
Reducer

© The Khronos® Group Inc. 2020 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

Layered OpenCL over Vulkan
• Clspv – Google’s open source OpenCL kernel to Vulkan SPIR-V compiler

- Tracks top-of-tree LLVM and Clang, not a fork

• Clvk – prototype open source OpenCL to Vulkan run-time API translator
• Used for shipping production apps and engines on Android

- Adobe Premiere Rush video editor – 200K lines of OpenCL C kernel code
- Butterfly Network iQ Ultrasound on Android
- Experimenting with Xiaomi MACE inferencing engine

Clang+Clspv
Compiler

OpenCL C or
C++ for OpenCL
Kernel Sources

OpenCL
Application
Host Code

Clvk run-time
API Translator

https://github.com/kpet/clvk
https://github.com/google/clspv

Vulkan
Runtime

Vulkan
SPIR-V

https://github.com/kpet/clvk
https://github.com/google/clspv

© The Khronos® Group Inc. 2020 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

DX12
Runtime

Layered OpenCL over DX12
• OpenCLOn12 - Microsoft and COLLABORA leveraging Clang/LLVM and MESA

- OpenCL 1.2 over DX12 is in development
- Also OpenGLOn12 – OpenGL 3.3 over DX12
- https://devblogs.microsoft.com/directx/in-the-works-opencl-and-opengl-mapping-layers-to-directx/

Clang+LLVM+
SPIR-V LLVM

OpenCL C or
C++ for OpenCL
Kernel Sources

OpenCL
Application
Host Code

CLOn12 Run-time
API Translator

Mesa SPIR-V
to DXIL

DXIL

Clang+Clspv
Compiler

OpenCL C or
C++ for OpenCL
Kernel Sources

Vulkan
Runtime

OpenCL
Application
Host Code

Clvk run-time
API Translator

Vulkan
SPIR-V

OpenCL over Vulkan OpenCL over DX12

Translates through
MESA’s NIR Intermediate

Representation

OpenCL
SPIR-V

https://devblogs.microsoft.com/directx/in-the-works-opencl-and-opengl-mapping-layers-to-directx/

© The Khronos® Group Inc. 2020 - Page 20This work is licensed under a Creative Commons Attribution 4.0 International License

Layered OpenCL over Metal??

Clang+Clspv
Compiler

OpenCL C or
C++ for OpenCL
Kernel Sources

Metal
Runtime

OpenCL
Application
Host Code

Run-time
API Translator

SPIRV-Cross
Convert SPIR-V kernels

to Metal Shaders

Metal
Shading

Language
Source

OpenCL over Vulkan OpenCL over Metal

Runtime conversion
of API calls. Easier to

shim OpenCL to
Metal than Vulkan

Need SPIRV-Cross expansion to
handle OpenCL dialect of SPIR-V
Vulkan dialect SPIR-V from clspv

IS ALREADY HANDLED

Clang+LLVM+
SPIR-V LLVM

Vulkan
SPIR-V

OpenCL
SPIR-V

Interest in OpenCL over Metal?
Khronos to host/coordinate

open source project?

Clang+Clspv
Compiler

OpenCL C or
C++ for OpenCL
Kernel Sources

Vulkan
Runtime

OpenCL
Application
Host Code

Clvk run-time
API Translator

Vulkan
SPIR-V

Need OpenCL Layered Profile?
Enables multiple layered subsets to be queryable and all

present functionality to be tested for conformance

OR OpenCL C to Metal
Source Translation?

© The Khronos® Group Inc. 2020 - Page 21This work is licensed under a Creative Commons Attribution 4.0 International License

Developers - Please Give Us Feedback!
• Is the set of optional features sliced too finely, or too coarsely?

- Are they easy to understand?

• Which optional features do you expect to use in your application or library?
- Usage data drives which optional features should be made mandatory in future

• What new features do you most need?
- We will use extensions to prove new functionality before adding to core specification
- What extensions would you like to see in the second half of 2020?

Urgency to Finalize and Ship
Finalized OpenCL 3.0 Specifications

Completed Conformance Tests
Multiple Shipping Conformant Implementations

Provisional OpenCL 3.0
Specification sources released on GitHub

https://www.khronos.org/registry/OpenCL/

Spec feedback and
pull requests welcome on GitHub

https://github.com/KhronosGroup/OpenCL-Docs/issues

OpenCL 3.0 Conformance Tests WIP
sources released on GitHub

https://github.com/KhronosGroup/OpenCL-CTS

OpenCL Working Group has maximized information in
Khronos public GitHub to accelerate finalization

Tests feedback and
pull requests welcome on GitHub

https://github.com/KhronosGroup/OpenCL-CTS/issues

Vendor OpenCL 3.0
Implementations in flight

https://github.com/KhronosGroup/OpenCL-Docs/issues
https://github.com/KhronosGroup/OpenCL-CTS

© The Khronos® Group Inc. 2020 - Page 22This work is licensed under a Creative Commons Attribution 4.0 International License

Get Involved!
• OpenCL 3.0 increases deployment flexibility and

sets the stage for raising the bar on pervasively available functionality
- https://www.khronos.org/registry/OpenCL/

• Please provide specification feedback ASAP on GitHub for OpenCL 3.0 finalization!
- https://github.com/KhronosGroup/OpenCL-Docs/issues

• We want to know what you need next from OpenCL on the Khronos Forums!
- https://community.khronos.org/c/opencl

• Engage with Khronos and help OpenCL evolve
- Join as a Khronos member for a voice and a vote in any of these standards
- Or request an invite to the OpenCL Advisory Panel
- https://www.khronos.org/members/

• Neil Trevett
- ntrevett@nvidia.com
- @neilt3d If you need OpenCL let your

hardware vendors know!
Your voice counts!

https://www.khronos.org/registry/OpenCL/
https://github.com/KhronosGroup/OpenCL-Docs/issues
https://community.khronos.org/c/opencl
https://www.khronos.org/members/
mailto:ntrevett@nvidia.com

